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The specific heat of an anharmonic phonon system 
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Department of Physics, University of California, Davis, CA 95616, USA 

Received 13 May 1988, in final form 12 October 1988 

Abstract. The effect of on-site anharmonicity in a one-dimensional phonon system is studied 
by calculating the specific heat at low temperatures. The formula for the specific heat is 
derived by applying the path integral method to the expression for the partition function. 

1. Introduction 

It is well known that for many phenomena in solid state physics the harmonic approxi- 
mation can be considered as completely satisfactory. In molecular crystals, however, 
such an approximation may not be adequate. For example, each molecule can have 
large anharmonicity. It is necessary then to treat the problem beyond the harmonic 
approximation. One possible way has been described in our earlier work [l]. It was 
shown there that, starting from the classical Hamiltonian which includes cubic and 
quartic terms, it is possible to derive a model Hamiltonian, which is essentially a Bose 
version of the Hubbard model with attractive interactions. This model Hamiltonian is 

N N 

H =  ( ~ b t b ,  - rIb:b:blbl)  + A (b:+,b, + b,+,b:) (1.1) 
I = 1  I =  1 

where E is the observed energy difference between the lowest two states of the uncoupled 
oscillators [l]. TI  and A are constants describing the anharmonicity at site 1 and the 
strength of the nearest-neighbour interaction, respectively, and bl and b,+ are the 
destruction and creation operators at site 1. The bl operators obey Bose statistics, i.e. 
[b,, b,?] = alp.  During the derivation of equation (l.l), two steps were important. 

(i) It was assumed that E is much larger than rl, A and the strength of the cubic 
anharmonicity in the classical Hamiltonian. 

(ii) Only the lowest-order phonon-conserved term was kept after the canonical 
transformation. 

The important parameter characterising the anharmonicity is x = W/T, where W = 
4A which is the phonon bandwidth. There is a broad spectrum of values for the parameter 
x as has already been discussed in [l]. Only two limiting cases of x were explicitly 
discussed in [ 11: they are x + 0 and x + cc.. The corresponding limiting expressions for 
the free energy were studied. Furthermore, for small x ,  the localisation of the multi- 
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vibrational excitations with random T I  has also been investigated [ 2 ] .  However, the 
important case of arbitrary x has not been studied. In this paper, we assume that TI  = r, 
a constant for the whole lattice and examine the effect of arbitrary on the one-phonon 
spectrum. Because of the presence of the on-site energy E ,  the optical phonon system is 
considered. The contribution of will be present mainly through the renormalisation of 
the site energy. Also r acts as the scattering centre for the phonon system. In 0 2, formal 
mathematical description to find an expression of the partition function in terms of the 
Green function will be outlined. An approximate way of finding the Green function will 
be presented and the expression of the free energy will be given in 0 3. Finally in 0 4 the 
results on the specific heat will be discussed. 

2. Formal derivation of the partition function 

Using commutation relations for the bI operators, we can rewrite the Hamiltonian (1.1) 
as 

H z H 0 - V  (2.1) 
where 

N N 

and 
N 

V =  rlnlni  
I =  1 

where El = E + T I  and nI = bifbI. El is the renormalised site energy. Equation (2.3) 
expresses the scattering potential for the phonon system defined by equation (2.2). It 
depends on the population nI at site 1. As we shall see later, the population contributes 
to the thermodynamical quantities through its thermal average. Furthermore, the low- 
temperature case will be of interest. The thermal average of nl is a small quantity and 
T(nInl) will not exceed the fundamental site energy. 

Using the well known formulae [3], the expression for the partition function can be 
written as 

where Tis the ordering operator with respect to z. 

each subinterval A T ,  we can apply the Gaussian identity 
The next step will be to divide the interval [0, 81 into Pfactors, i.e. p = P A T .  Within 

exp(a*) = ’j+= $ exp( -+z2 + az) 
--a 

where in our case a2 = AT r l n f ( z ) .  After changing variables 

Z I ( t ) / 6  = m E d T )  

one can express the exponential term in equation (2.4) as follows: 
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and the measure D&(z) is defined as 

and 

The above trick allows us to write the partition function as 

and Z0 is the partition function corresponding to H,. To evaluate the above average, we 
define 

and follow the method in [4,5] by introducing the coupling constant A via q-+ Acl. 
Differentiating with respect to A gives 

The new average is defined as 

(2.10) 

Equation (2.9) expresses the partition function explicitly in terms of the scattering 
contribution of the anharmonicity c1 and the average population (nr( z ) ) ~  in which the 
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additional contribution of r will appear in E through the thermal average. The latter 
can be evaluated by introducing the following Green function: 

G i j ( ~ ,  z’)  E - (Trbi (~)bT(z’ ) )7 ,  (2.11) 

which is related to average population as ( n / ( ~ ) ) ~  = -Gll(t ,  z’). The Green function 
Gij(z,  z‘) satisfies the Dyson equation 

N 

G,( t ,  z’) = G$(T - z‘) + A C I  dz”  G:(z - Z“)E~(T”)G~~(T” ,  z’), 
/= 1 

Its Fourier transform with respect to ‘time’ z is given as 

(2.12) 

(2.13) 

and where w, = (2n/P)n. It should be noted that n in equation (2.13) is adummy variable 
used for the Fourier transform. 

The Fourier-transformed Dyson equation is then 

with the Fourier transform of the field EI(z) being 

gI(n - nf’) = lop d z  Er(z)  exp[i(w, - w , , ) ~ ] .  (2.15) 

Now, equation (2.9) can be written in terms of the Fourier transform of the Green 
function 

(2.16) 

The above formal expression for the partition function and the Dyson equation 
(2.14) are our starting formulae to derive the expressions of free energy and specific 
heat. In 0 3, we shall solve GI/ by using the static approximation. 

3. Static approximation 

This approximation consists of taking the &(z) to be time independent, i.e. 

c I ( z )  = El,, = constant. (3.1) 

This is equivalent to the case that each frequency mode is independent of the other 
(equation (2.15)). 

In this approximation, the Dyson equation is 
N 

where qr = pcrElo and G,(n) = Gij(n, n). 
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On the assumption that only the nearest-neighbour Green functions are non-zero, 
the above equation generates the following system of algebraic equations (we have 
dropped the n dependence): 
Gii(1 - ilqiG$) - Aqi+1Gyi+lGi+i,i - Aqi-iGY,i-iGi-l,i = G$ 

- GiiAqiGP+l,i + (1 - Aqi+lGP+l,i+i)Gi+l,i = GY+l,i 
- GiiilqiGp-l.l + (1 -Aqi-lGp-l,i-l)Gi-l,i  = GP-l,,. (3.3) 

The above set of coupled equations can be solved by standard method. Using the 
Go, we 

(3.4) 

results from Appendix 1 and the notation G! = GPkl,ikl = GD and Gp,l,i 
obtain 

Gii = [GD(1 - AqGD) + 2AqGi]/[(l - AqGD)’ - 2A2q2Gi] 
where ql q = constant because of the assumption that rl = constant. 

In this static approximation the partition function is 
N +m 

Substituting (3.4) into (3.5),  integrating over A and finally putting A = 1, one has 
+-z 

where 

G,(n) = -(l/P)[l/(E - iwn)][l + 2 A 2 / ( E  - iwn)’] 

G o b )  = ( 1 / P ) [ m  - i%l)ltA/(E - iwnll. 
(3.7) 
(3.8) 

From equation (2.5) the change in the free energy per site in the static approximation 
is 

1 += 
A F =  - -1.1 dEexp(-xE2) Z(g) P --z 

(3.9) 

where Z(6)  is given by equation (3.6).  

steepest descent integration for small with equations (3.7) and (3.8), we finally have 

A F  = - T{l/[exp(PE) - 11 - A2P2 exp(PE)[exp(/3E) + l]/[exp(PE) - l]3}2. 

By assuming that A 4 E in the frequency sum in equation (3.6) and performing the 

(3.10) 

4. Specific heat 

We can use the results in 5 3 and Appendix 2 to evaluate analytically the expression for 
low-temperature specific heat. Using the standard definition, the specific heat per site 
in the case with I‘ = 0 is 

l n  [@?(E + 2A C O S X ) ] ~  

= & Jo dx sinh2 [ @ ( E  + 2A cos x)] (4.1) 

Taking the low-temperature limit (@A .--, w) ,  one finds that 

Except for the factor l / a ,  C’$, in equation (4.2) is just for a two-level system which 
C\ = 1 / ( 2 f i )  (P’/*) ( E  - 2A)2 exp[-/3(E - 2A)]. (4 * 2) 
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0 2 4 6 
T ( K )  

Figure 1. Specific heat in the case with r = 0 (Boltzmann constant kB = 1; site energy E = 
20.0; A = 0.5). 

is expected from optical phonon system. The factor l /va is obtained through the 
integration of x ,  where x = ka (Appendix 2). For r # 0, using equation (3.10), one has 
for the leading temperature term 

ACv = 6ErA2P4 exp( -PE) (4.3) 

where r appears also in E. 
We have performed numerical integration of equation (4.1) using E = 20 which is 

equivalent to 0.1 eV, the optical phonon energy and A = 0.5. The result is shown in 
figure 1. As the temperature ( T )  increases, C$ increases monotonically at low tem- 
peratures. 

By examining the expressions given in equations (4.2) and (4.3), we find that the 
term ( E  - 2A)' dominates the total Cv(= C$ + ACv) for physically reasonable values 
of A and r. It becomes extremely difficult to see the effect of r in ACv if Cvis plotted as 
a function of T. So we plot the ratio of ACv/C$ as a function of temperature using 
equations (4.3) and (4.1) (figure 2). For A = 0.5, we used two values of r (full curve for 
r = 0.2 and broken curve for r = 5.0). At low temperatures ( T  C 2.4 K), the effect of 
temperature is rather small. Consequently, the two curves nearly coincide. For 
T > 2.4 K, more phonons are excited. The phonon-phonon interaction due to r 
increases. It causes the broken curve with r = 5.0 to increase more rapidly than the full 
curve with r = 0.2. 

We have also increased A to the value of 2.0 and constructed a plot for an intermediate 
r value of 0.5 (dotted curve). For low temperatures ( T  < 2.8 K), it is difficult to excite 
phonons with large A .  So ACv is smaller than the cases with smaller A. For high 
temperatures the dominant contribution to the specific heat is due to the scattering 
among the phonons and at a given temperature it is dominated by the largest value of r. 
As shown in figure 2 the dotted curve falls between the two other curves (r = 0.2 and 
r = 5.0). 
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Figure 2. Plot of ACV/Ct as a function of temperature (kB = 1; site energy E = 20.0): 
-,r = 0 . 2 , ~  = os;---,r = 5 . 0 , ~  = 0.5;  ...... , r = o s ,  A = 2.0. 

Appendix 1. Zero-order Green function 

The zero-order Green function G i ( u )  corresponds to c1 = 0 and is defined as 

G!j(z) = - (T,b,(4bi+(0)),. (Al . l )  

The appropriate zero-order Hamiltonian reads 

H ,  = 2 Eb:bl+ A E (b:+,bl + b,+lbT) (A1.2) 
1 1 

where E = E + r. 
The diagonalisation of (Al.2) is performed by the transformation 

1 
bl = -E bk exp(ika1). 

f l k  

The result of diagonalisation is well known: 

H &  = 2 Qkbk+bk 
k 

and Qk = E + 2A COS ka. 
Using definition (Al . l )  and following [6], one easily finds that 

1 
N k  

Gi(z) = - - E exp[ika(l - i)]  exp( -uQk) [Nk + e ( Z > ]  

where Nk = [exp(/3Qk) - 11-l and e(z) is the step function. 

(A1.3) 

(A1.4) 

(A1.5) 
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In 8 3, we needed the inverse Fourier transform of (A1.5) which is defined as 

G$(n)  = L J ’  dzexp(io, ,z) Gh(z )  
S O  

and U, = (2n/P)n. Simple integration gives 

1 1 
G$(n) = - 2 exp[ika(l - j ) ]  . 

The above sum is then replaced by an integral as (a = L/N) 

PN k - ak* 

Using the result from [7] , one finally finds that 

G$(n) = (-l/pN){l/[(E - io,)* - 4A2I1/*} 

x [ d ( E  - io,)* - 4A2 - ( E  - io1~)]/2A}I‘-jl 

(A1.6) 

(A1.7) 

(A1.8) 

(A1.9) 

Appendix 2. Free energy for r = 0 

For r = 0, we can use the result from [SI: 

1 
F - - 2 ln[2 sinh (ipek)] (A2.1) 

O - p  k 

where Qk = E + 2A cos ka. Using again equation (A1.8), the free energy per site is 

- F,  1 1  
O -  N PnfO 

F =-=--  dx ln(2 sinh[@(& + 2A cos x ) ] } .  (A2.2) 
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